

Commissioning for HDR Prostate Brachytherapy and Early Clinical Experience

Rissa Cunningham

Overview

- GSTT has a great deal of experience in LDR Brachytherapy
- HDR prostate service at GSTT for boosts went clinical in November 2022
- Treated 5 patients so far

HDR prostate procedure

Phantom simulation

- Using a SIM prostate phantom, the catheters were inserted into the 'prostate' guided by the ultrasound
- The phantom was CT and MRI scanned

Phantom simulation

The phantom was used during commissioning to:

- Test the fusion options in Oncentra
- Needle reconstruction
- Design a template for the inverse planning optimisation function

Squared error

0.07 cm

0.12 cm

0.09 cm

0.16 cm

0.11 cm

ionisation

- Scanned the tank with the chamber in situ and marker wires in the catheters to define the first dwell position
- Imported the scan into Oncentra TPS and simulated a plan

Creating treatment plans in Oncentra TPS

3 plans were created in Oncentra TPS for chamber measurements in the water filled tank:

1. Calibration coefficient plan: one catheter activated and normalised to the pinpoint's effective point of measurement to a known dose of 2Gy

2. Rechecked by activating a different catheter with the final calibration factor taken by their average

3. Clinical plan created using the inverse planning optimisation function

Water tank measurements

9% dose difference between the chamber reading and the TPS calculated dose for the clinical plan

Possible reason for the deviation:

• Energy dependence with the chamber used

TLD measurements in the tank

- Verified the tank measurements using TLDs as the measuring device
- Delivered the same plans as mentioned before (calibration plan and clinical plan)
- 5% dose difference between the TPS dose and TLD readings
- A previous IAEA audit confirmed an absolute dose difference with other centres of 0.5%

Early Clinical Challenges- fusion challenges

- Standard method on Oncentra at GSTT: Landmark fusion
- Worked well on the first and second patient but ran into problems on the third patient
- Fusing in Eclipse- MRI scan taken a week before treatment to save time on the day

MR 01 x[cm] y[cm] x [cm] Name Point 1 -1.910 -3.250 -0.942 0.029 -6.440 Point 1 Point 2 -0.019 -3.250 1.854 -6.440 -6.191 -2.953 Point 2 Point 3 -2.928 1.000 -1.430 Point 3 -0.890 -2.190 -4.906 -0.350 1.000 0.647 1.786 -2.190 -2.958 Point 4 Point 4 New poin New poi Calculate Close

- 24

Early Clinical Challenges- Plan optimisation

DVH metrics

ROI	Dose [%]	Dose [Gy]	Volume [%]	Volume [ccm]
СТУ —	I 835 66374	5050 18845 I	5000 001	
CTV	100.00	15.0000	93.33	32.51
CTV	72.08	10.8122	100.00	34.83
CTV	150.00	22.5000	34.84	12.14
CTV	200.00	30.0000	12.03	4.19
CTV	106.23	15.9340	90.00	31.35
PTV				
PTV	100.00	15.0000	83.69	43.14
PTV	58.61	8.7917	100.00	51.55
PTV	150.00	22.5000	29.63	15.27
PTV	200.00	30.0000	10.34	5.33
PTV	90.48	13.5715	90.00	46.39
Rectum				
Rectum	95.73	14.3602	0.03	0.01
Rectum	100.00	15.0000	0.01	0.00
Rectum	100.00	15.0000	0.01	0.00
Rectum	51.33	7.6991	6.15	2.00
Urethra				
Urethra	114.15	17.1218	7.56	0.10
Urethra	113.66	17.0486	10.00	0.13
Urethra	140.00	21.0000	-	
Urethra	150.00	22.5000	-	-
Urethra	109.98	16.4963	30.00	0.40

- PTV coverage low D90 = 90-96% for our 5 patients so far (target is 100%)
- CTV coverage has been good D90 well over 100% for all patients so far
- Limiting OAR has been the urethra in all cases:
 - D10 < 17.5Gy (116%)
 - D30 < 16.5Gy (130%)

Likely caused by needles not being pushed in far enough

Conclusions

- Implemented and commissioned a pathway for HDR Brachytherapy for prostates
- 5 patients successfully treated
- Continue to improve our method to fuse the CT and MRI scans
- Continue to optimise needle placement

Thank you for listening Any questions?

Rissa.Cunningham@gstt.nhs.uk

